September 2025

Oceanography | Vol. 38, No. 3

38

Lang, F., J. Gwinn, K. Grabb, A. Valauri-Orton, and G. Spencer. 2024. Guide to

Developing Mentoring Programs for the International Ocean Community.

The Ocean Foundation, 31 pp., https://oceanfdn.org/wp-content/uploads/2024/01/

TOF-Guide-to-Ocean-Mentoring_high-res.pdf.

Lewis, C.N., K.A. Brown, L.A. Edwards, G. Cooper, and H.S. Findlay. 2013. Sensitivity

to ocean acidification parallels natural pCO2 gradients experienced by Arctic cope-

pods under winter sea ice. Proceedings of the National Academy of Sciences

of the United States of America 110(51):E4960–E4967, https://doi.org/10.1073/

pnas.1315162110.

Li, H., S. Zheng, Q.-G. Tan, L. Zhan, T.R. Martz, and J. Ma. 2023. Toward citizen

science-​based ocean acidification observations using smartphone devices.

Analytical Chemistry 95(41):15,409–15,417, https://doi.org/10.1021/acs.analchem.​

3c03720.

Lowder, K.B., M.S. deVries, R. Hattingh, J.M.D. Day, A.J. Andersson, P.J. Zerofski,

and J.R.A. Taylor. 2022. Exoskeletal predator defenses of juvenile California

spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidifica-

tion-like conditions. Frontiers in Marine Science 9:909017, https://doi.org/10.3389/

fmars.2022.909017.

Mangan, S., R.W. Wilson, H.S. Findlay, and C. Lewis. 2019. Acid–base physiology

over tidal periods in the mussel Mytilus edulis: Size and temperature are more

influential than seawater pH. Proceedings of the Royal Society B: Biological

Sciences 286(1897), https://doi.org/10.1098/rspb.2018.2863.

McGovern, E., J. Schilder, Y. Artioli, S. Birchenough, S. Dupont, H.S. Findlay,

I. Skjelvan, M.D. Skogen, M. Álvarez, J.V. Büsher, and others. 2023. Ocean acid-

ification. In OSPAR, 2023: The 2023 Quality Status Report for the North-East

Atlantic. OSPAR Commission, London, https://oap.ospar.org/en/ospar-assessments/

quality-status-reports/qsr-2023/other-assessments/ocean-acidification/.

Meyer, A.M., and M.J. Spalding. 2021. A Critical Analysis of the Ocean Effects of

Carbon Dioxide Removal via Direct Air and Ocean Capture – Is it a Safe and

Sustainable Solution? The Ocean Foundation, 18 pp., https://oceanfdn.org/

wp-​content/​uploads/2021/04/Direct-Carbon-Removal-Strategies-TOF-v20Apr21.pdf.

Mongin, M., M.E. Baird, A. Lenton, C. Neill, and J. Akl. 2021. Reversing ocean acidifica-

tion along the Great Barrier Reef using alkalinity injection. Environmental Research

Letters 16:064068, https://doi.org/10.1088/1748-9326/ac002d.

Mos, B., M. Byrne, and S.A. Dworjanyn. 2020. Effects of low and high pH on sea urchin

settlement, implications for the use of alkali to counter the impacts of acidification.

Aquaculture 528:735618, https://doi.org/10.1016/j.aquaculture.2020.735618.

Müller, J.D., and N. Gruber. 2024. Progression of ocean interior acidification over

the industrial era. Science Advances 10:eado3103, https://doi.org/10.1126/sciadv.

ado3103.

Narita, D., and K. Rehdanz. 2017. Economic impact of ocean acidification on

shellfish production in Europe. Journal of Environmental Planning and

Management 60:500–518, https://doi.org/10.1080/09640568.2016.1162705.

NASEM (National Academies of Sciences, Engineering, and Medicine).

2022. A Research Strategy for Ocean-based Carbon Dioxide Removal

and Sequestration. National Academies Press, Washington, DC, 322 pp.,

https://doi.org/​10.17226/26278.

Nawaz, S., C. Scott-Buechler, and H. Caggiano. 2024. An independent public engage-

ment body is needed to responsibly scale carbon removal in the US. Environmental

Research Letters 19:011002, https://doi.org/10.1088/1748-9326/ad1081.

Newton, J., R. Feely, E. Jewett, P. Williamson, and J. Mathis. 2015. Global Ocean

Acidification Observing Network: Requirements and Governance Plan. Global

Ocean Acidification Observing Network, 57 pp., https://cdn.ioos.noaa.gov/

media/2019/08/GOA-ON_plan_print.pdf.

Newton, J., S. Widdicombe, K. Isensee, S. Dupont, S. Flickinger, K. Grabb, E. Keister,

K. Schoo, A. Kenworthy, and A. Valauri-Orton. 2025. Ocean acidification capacity is

needed at all levels to develop a multistakeholder ocean acidification action plat-

form. Oceanography 38(1):99–100, https://doi.org/10.5670/oceanog.2025.101.

OA-ICC (Ocean Acidification International Coordination Centre). 2023. Data com-

pilation on the biological response to ocean acidification: 2008–2023 [dataset].

PANGAEA, https://doi.org/10.1594/PANGAEA.962556.

Orr, J.C., J.-M. Epitalon, A.G. Dickson, and J.-P. Gattuso. 2018. Routine uncertainty

propagation for the marine carbon dioxide system. Marine Chemistry 207:84–107,

https://doi.org/10.1016/j.marchem.2018.10.006.

Oschlies, A., A. Stevenson, L.T. Bach, K. Fennel, R.E.M. Rickaby, T. Satterfield,

R. Webb, and J.-P. Gattuso, eds. 2023. Guide to Best Practices in Ocean Alkalinity

Enhancement Research. State of the Planet 2-oae2023, https://doi.org/10.5194/

sp-2-oae2023.

Palmiéri, J., and A. Yool. 2024. Global-scale evaluation of coastal ocean

alkalinity enhancement in a fully coupled Earth system model. Earth’s

Future 12:e2023EF004018, https://doi.org/10.1029/2023EF004018.

Pardis, W., K.C. Grabb, M.D. DeGrandpre, R. Spaulding, J. Beck, J.A. Pfeifer, and

D.M. Long. 2022. Measuring protons with photons: A hand-held, spectrophotomet-

ric pH analyzer for ocean acidification research, community science and education.

Sensors 22:7924, https://doi.org/10.3390/s22207924.

Pedersen, F., and P. Hansen. 2003. Effects of high pH on a natural marine planktonic

community. Marine Ecology Progress Series 260:19–31, https://doi.org/10.3354/

meps260019.

Planchat, A., L. Kwiatkowski, L. Bopp, O. Torres, J.R. Christian, M. Butenschön,

T. Lovato, R. Séférian, M.A. Chamberlain, O. Aumont, and others. 2023. The repre-

sentation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system

models and implications for the carbon cycle. Biogeosciences 20(7):1,195–1,257,

https://doi.org/10.5194/bg-20-1195-2023.

Renforth, P., and G. Henderson. 2017. Assessing ocean alkalinity for carbon sequestra-

tion. Reviews of Geophysics 55:636–674, https://doi.org/10.1002/2016RG000533.

Ricart, A.M., B. Gaylord, T.M. Hill, J.D. Sigwart, P. Shukla, M. Ward, A. Ninokawa, and

E. Sanford. 2021. Seagrass-driven changes in carbonate chemistry enhance oyster

shell growth. Oecologia 196:565–576, https://doi.org/10.1007/s00442-021-04949-0.

Riebesell, U., V.J. Fabry, L. Hansson, and J.-P. Gattuso. 2011. Guide to Best Practices

for Ocean Acidification Research and Data Reporting. Office for Official

Publications of the European Communities, 258 pp., https://doi.org/10.2777/58454.

Rose, K.C., E.M. Ferrer, S.R. Carpenter, S.A. Crowe, S.C. Donelan, V.C. Garçon,

M. Grégoire, S.F. Jane, P.R. Leavitt, L.A. Levin, and others. 2024. Aquatic deoxygen-

ation as a planetary boundary and key regulator of Earth system stability. Nature

Ecology & Evolution 8:1,400–1,406, https://doi.org/10.1038/s41559-024-02448-y.

Schulz, K.G., L.T. Bach, and A.G. Dickson. 2023. Seawater carbonate chemis-

try considerations for ocean alkalinity enhancement research: theory, measure-

ments, and calculations. State of the Planet, 2-oae2023, 2, https://doi.org/10.5194/

sp-2-oae2023-2-2023.

Secretariat of the Convention on Biological Diversity. 2014. An Updated Synthesis of

the Impacts of Ocean Acidification on Marine Biodiversity. CBD Technical Series

No. 75, Secretariat of the Convention on Biological Diversity, Montreal, 99 pp.,

https://www.cbd.int/doc/publications/cbd-ts-75-en.pdf.

Smith, S., S. Fuss, H. Buck, F. Schenuit, J. Pongratz, I. Schulte, W.F. Lamb, B. Probst,

M. Edwards, G.F. Nemet, and others. 2024. “The State of Carbon Dioxide Removal,

2nd ed.,” https://doi.org/10.17605/OSF.IO/F85QJ.

Suitner, N., G. Faucher, C. Lim, J. Schneider, C.A. Moras, U. Riebesell, and J. Hartmann.

2024. Ocean alkalinity enhancement approaches and the predictability of run-

away precipitation processes: Results of an experimental study to deter-

mine critical alkalinity ranges for safe and sustainable application scenarios.

Biogeosciences 21(20):4,587–4,604, https://doi.org/10.5194/bg-21-4587-2024.

Sundin, J. 2023. The effects of ocean acidification on fishes – History and future out-

look. Journal of Fish Biology 103:765–772, https://doi.org/10.1111/jfb.15323.

Tagliabue, A., B.S. Twining, N. Barrier, O. Maury, M. Berger, and L. Bopp. 2023. Ocean

iron fertilization may amplify climate change pressures on marine animal biomass

for limited climate benefit. Global Change Biology 29:5,250–5,260, https://doi.org/​

10.1111/gcb.16854.

Thor, P., F. Vermandele, A. Bailey, E. Guscelli, L. Loubet-Sartrou, S. Dupont, and

P. Calosi. 2022. Ocean acidification causes fundamental changes in the cellular

metabolism of the Arctic copepod Calanus glacialis as detected by metabolomic

analysis. Scientific Reports 12:22223, https://doi.org/10.1038/s41598-022-26480-9.

Valauri-Orton, A., K. Lowder, K. Currie, C.L. Sabine, A.G. Dickson, S.N. Chu, A. Acosta,

F.E. Asuquo, R. Bermudez, U. Bilounga, and others. 2025. Perspectives from devel-

opers and users of the GOA-ON in a Box kit: A model for capacity sharing in ocean

sciences. Oceanography 38(1):96–98, https://doi.org/10.5670/oceanog.2025.135.

Van Dam, B.R., and H. Wang. 2019. Decadal-scale acidification trends in adja-

cent North Carolina estuaries: Competing role of anthropogenic CO2 and river-

ine alkalinity loads. Frontiers in Marine Science 6:136, https://doi.org/10.3389/

fmars.2019.00136.

Vargas, C.A., L.A. Cuevas, B.R. Broitman, V.A. San Martin, N.A. Lagos,

J.D. Gaitán-Espitia, and S. Dupont. 2022. Upper environmental pCO2 drives

sensitivity to ocean acidification in marine invertebrates. Nature Climate

Change 12:200–207, https://doi.org/10.1038/s41558-021-01269-2.

Vivian, C., M. Boettcher, and P. Boyd. 2024. Potential of marine carbon dioxide

removal (mCDR) to increase the ocean carbon sink. Pp. 55–58 in State of the

Ocean Report 2024. IOC Technical Series 190, UNESCO-IOC, Paris, France,

https://doi.org/​10.25607/4wbg-d349.

Wahl, M., S. Schneider Covachã, V. Saderne, C. Hiebenthal, J.D. Müller, C. Pansch,

and Y. Sawall. 2018. Macroalgae may mitigate ocean acidification effects on

mussel calcification by increasing pH and its fluctuations. Limnology and

Oceanography 63(1):3–21, https://doi.org/10.1002/lno.10608.

Wang, H., D.J. Pilcher, K.A. Kearney, J.N. Cross, O.M. Shugart, M.D. Eisaman, and

B.R. Carter. 2023. Simulated impact of ocean alkalinity enhancement on atmo-

spheric CO2 removal in the Bering Sea. Earth’s Future 11:e2022EF002816,

https://doi.org/​10.1029/2022EF002816.