Oceanography | Vol. 38, No. 3
22
Kleiven, H.F., C. Kissel, C. Laj, U.S. Ninnemann, T.O. Richter, and E. Cortijo. 2008.
Reduced North Atlantic Deep Water coeval with the Glacial Lake Agassiz freshwater
outburst. Science 319(5859):60–64, https://doi.org/10.1126/science.1148924.
Lakeman, T.R., A.J. Pieńkowski, F.C. Nixon, M.F.A. Furze, S. Blasco, J.T. Andrews, and
E.L. King. 2018. Collapse of a marine-based ice stream during the early Younger
Dryas chronozone, western Canadian Arctic. Geology 46(3):211–214, https://doi.org/
10.1130/g39665.1.
Lambeck, K., H. Rouby, A. Purcell, Y. Sun, and M. Sambridge. 2014. Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene.
Proceedings of the National Academy of Sciences of the United States of
America 111(43):15,296–15,303, https://doi.org/10.1073/pnas.1411762111.
Le Bras, I., F. Straneo, M. Muilwijk, L.H. Smedsrud, F. Li, M.S. Lozier, and N.P. Holliday.
2021. How much Arctic fresh water participates in the subpolar overturning circu-
lation? Journal of Physical Oceanography 51(3):955–973, https://doi.org/10.1175/
jpo-d-20-0240.1.
LeGrand, P., and C. Wunsch. 1995. Constraints from paleotracer data
on the North Atlantic circulation during the Last Glacial Maximum.
Paleoceanography 10(6):1,011–1,045, https://doi.org/10.1029/95pa01455.
Li, L., M.S. Lozier, and F. Li. 2022. Century-long cooling trend in subpolar
North Atlantic forced by atmosphere: An alternative explanation. Climate
Dynamics 58(9–10):2,249–2,267, https://doi.org/10.1007/s00382-021-06003-4.
Lippold, J., J. Grützner, D. Winter, Y. Lahaye, A. Mangini, and M. Christl. 2009. Does
sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional
Overturning Circulation? Geophysical Research Letters 36(12), https://doi.org/
10.1029/2009GL038068.
Lippold, J., F. Pöppelmeier, F. Süfke, M. Gutjahr, T.J. Goepfert, P. Blaser, O. Friedrich,
J.M. Link, L. Wacker, S. Rheinberger, and S.L. Jaccard. 2019. Constraining
the Variability of the Atlantic Meridional Overturning Circulation During the
Holocene. Geophysical Research Letters 46(20):11,338–11,346, https://doi.org/
10.1029/2019gl084988.
Little, C.M., M. Zhao, and M.W. Buckley. 2020. Do surface temperature indices reflect
centennial-timescale trends in Atlantic Meridional Overturning Circulation strength?
Geophysical Research Letters 47(22), https://doi.org/10.1029/2020gl090888.
Liu, Z., B.L.O. Bliesner, F. He, E.C. Brady, R. Tomas, P.U. Clark, A.E. Carlson,
J. Lynch-Stieglitz, W.B. Curry, E.J. Brook, and others. 2009. Transient simula-
tion of last deglaciation with a new mechanism for Bolling-Allerod warming.
Science 325(5938):310–314, https://doi.org/10.1126/science.1171041.
Liu, Z. 2023. Evolution of Atlantic Meridional Overturning Circulation since the last
glaciation: Model simulations and relevance to present and future. Philosophical
Transactions of the Royal Society A 381(2262):20220190, https://doi.org/10.1098/
rsta.2022.0190.
Luo, H., R.M. Castelao, A.K. Rennermalm, M. Tedesco, A. Bracco, P.L. Yager, and
T.L. Mote. 2016. Oceanic transport of surface meltwater from the southern Greenland
ice sheet. Nature Geoscience 9(7):528–532, https://doi.org/10.1038/ngeo2708.
Lynch-Stieglitz, J., and R.G. Fairbanks. 1994. A conservative tracer for glacial ocean cir-
culation from carbon isotope and palaeo-nutrient measurements in benthic foramin-
ifera. Nature 369(6478):308–310, https://doi.org/10.1038/369308a0.
Lynch-Stieglitz, J., T.F. Stocker, W. Broecker, and R. Fairbanks. 1995. The influence
of air-sea exchange on the isotopic composition of oceanic carbon: Observations
and modeling. Global Biogeochemical Cycles, 9:653–665, https://doi.org/10.1029/
95GB02574.
Lynch-Stieglitz, J., M.W. Schmidt, L.G. Henry, W.B. Curry, L.C. Skinner, S. Mulitza,
R. Zhang, and P. Chang. 2014. Muted change in Atlantic overturning circulation over
some glacial-aged Heinrich events. Nature Geoscience 7(2):144–150, https://doi.org/
10.1038/ngeo2045.
Lynch-Stieglitz, J. 2017. The Atlantic Meridional Overturning Circulation and abrupt cli-
mate change. Annual Review of Marine Science 9(1):83–104, https://doi.org/10.1146/
annurev-marine-010816-060415.
Madan, G., A. Gjermundsen, S.C. Iversen, and J.H. LaCasce. 2024. The weaken-
ing AMOC under extreme climate change. Climate Dynamics 62(2):1,291–1,309,
https://doi.org/10.1007/s00382-023-06957-7.
Manabe, S., and R.J. Stouffer. 1995. Simulation of abrupt climate change induced
by freshwater input to the North Atlantic Ocean. Nature 378(6553):165–167,
https://doi.org/10.1038/378165a0.
Marchal, O., and W.B. Curry. 2008. On the abyssal circulation in the glacial
Atlantic. Journal of Physical Oceanography 38(9):2,014–2,037, https://doi.org/
10.1175/2008jpo3895.1.
Marchal, O., and N. Zhao. 2021. On the estimation of deep Atlantic ventilation from fos-
sil radiocarbon records: Part II. (In)consistency with modern estimates. Journal of
Physical Oceanography 51(8):2,681–2,704, https://doi.org/10.1175/jpo-d-20-0314.1.
Marchal, O., and A. Condron. 2025. On the spreading of glacial meltwater in the
western North Atlantic: Part I. Role of Dynamical Instabilities. Journal of Physical
Oceanography 55(2):155–174, https://doi.org/10.1175/JPO-D-23-0170.1.
Marchitto, T.M., and W.S. Broecker. 2006. Deep water mass geometry in the gla-
cial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca.
Geochemistry Geophysics Geosystems 7(12), https://doi.org/10.1029/2006gc001323.
Marcott, S.A., T.K. Bauska, C. Buizert, E.J. Steig, J.L. Rosen, K.M. Cuffey, T.J. Fudge,
J.P. Severinghaus, J. Ahn, M.L. Kalk, and others. 2014. Centennial-scale changes
in the global carbon cycle during the last deglaciation. Nature 514:616–619,
https://doi.org/10.1038/nature13799.
Marshall, J., and K. Speer. 2012. Closure of the meridional overturning circulation
through Southern Ocean upwelling. Nature Geoscience 5(3):1–10, https://doi.org/
10.1038/ngeo1391.
McCave, I.N., B. Manighetti, and S.G. Robinson. 1995. Sortable silt and fine sediment
size/composition slicing: Parameters for palaeocurrent speed and palaeoceanogra-
phy. Paleoceanography 10(3):593–610, https://doi.org/10.1029/94pa03039.
McCave, I.N., and I.R. Hall. 2006. Size sorting in marine muds: Processes, pit-
falls, and prospects for paleoflow-speed proxies. Geochemistry, Geophysics,
Geosystems 7(10), https://doi.org/10.1029/2006gc001284.
McCave, I.N., D.J.R. Thornalley, and I.R. Hall. 2017. Relation of sortable silt grain-size
to deep-sea current speeds: Calibration of the ‘Mud Current Meter.’ Deep Sea
Research Part I 127:1–12, https://doi.org/10.1016/j.dsr.2017.07.003.
McClymont, E.L., H.L. Ford, S.L. Ho, J.C. Tindall, A.M. Haywood, M. Alonso-Garcia,
I. Bailey, M.A. Berke, K. Littler, M.O. Patterson, and others. 2020. Lessons from
a high-CO2 world: An ocean view from ~3 million years ago. Climate of the
Past 16(4):1,599–1,615, https://doi.org/10.5194/cp-16-1599-2020.
McManus, J.F., D.W. Oppo, and J.L. Cullen. 1999. A 0.5-million-year record of
millennial-scale climate variability in the North Atlantic. Science 283(5404):971–975,
https://doi.org/10.1126/science.283.5404.971.
McManus, J.F., R. François, J.M. Gherardi, L.D. Keigwin, and S. Brown-Leger. 2004.
Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial
climate changes. Nature 428(6985):834–837, https://doi.org/10.1038/nature02494.
Menviel, L., A. Timmermann, O.E. Timm, and A. Mouchet. 2011. Deconstructing the Last
Glacial termination: The role of millennial and orbital-scale forcings. Quaternary
Science Reviews 30(9–10):1,155–1,172, https://doi.org/10.1016/j.quascirev.2011.02.005.
Muglia, J., and A. Schmittner. 2021. Carbon isotope constraints on glacial Atlantic
meridional overturning: Strength vs depth. Quaternary Science Reviews 257:106844,
https://doi.org/10.1016/j.quascirev.2021.106844.
Mulitza, S., M. Prange, J. Stuut, M. Zabel, T. von Dobeneck, A.C. Itambi, J. Nizou,
M. Schulz, and G. Wefer. 2008. Sahel megadroughts triggered by glacial slowdowns
of Atlantic meridional overturning. Paleoceanography 23(4), https://doi.org/10.1029/
2008pa001637.
Murton, J.B., M.D. Bateman, S.R. Dallimore, J.T. Teller, and Z. Yang. 2010. Identification
of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean.
Nature 464(7289):740–743, https://doi.org/10.1038/nature08954.
Ng, H.C., L.F. Robinson, J.F. McManus, K.J. Mohamed, A.W. Jacobel, R.F. Ivanovic,
L.J. Gregoire, and T. Chen. 2018. Coherent deglacial changes in western Atlantic
Ocean circulation. Nature Communications 9(1):2947, https://doi.org/10.1038/
s41467-018-05312-3.
North Greenland Ice Core Project Members. 2004. High-resolution record of Northern
Hemisphere climate extending into the last interglacial period. Nature 431:147–151,
https://doi.org/10.1038/nature02805.
Oppo, D.W., G. Gebbie, K.-F. Huang, W.B. Curry, T.M. Marchitto, and K.R. Pietro.
2018. Data constraints on glacial Atlantic Water mass geometry and proper-
ties. Paleoceanography and Paleoclimatology 298(5599):33(9):1,013–1,034,
https://doi.org/10.1029/2018pa003408.
Pacini, A., and R.S. Pickart. 2023. Wind-forced upwelling along the West Greenland
shelfbreak: Implications for Labrador Sea Water formation. Journal of Geophysical
Research: Oceans 128(3), https://doi.org/10.1029/2022jc018952.
Peltier, W.R., D.F. Argus, and R. Drummond. 2015. Space geodesy constrains ice age
terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical
Research: Solid Earth 120(1):450–487, https://doi.org/10.1002/2014jb011176.
Pennelly, C., and P.G. Myers. 2020. Introducing LAB60: A 1/60° NEMO 3.6
numerical simulation of the Labrador Sea. Geoscientific Model
Development 13(10):4,959–4,975, https://doi.org/10.5194/gmd-13-4959-2020.
Pickart, R.S., and M.A. Spall. 2007. Impact of Labrador Sea convection on
the North Atlantic Meridional Overturning Circulation. Journal of Physical
Oceanography 37(9):2,207–2,227, https://doi.org/10.1175/jpo3178.1.
Pöppelmeier, F., P. Blaser, M. Gutjahr, F. Süfke, D.J.R. Thornalley, J. Grützner, K.A. Jakob,
J.M. Link, S. Szidat, and J. Lippold. 2019. Influence of ocean circulation and benthic
exchange on deep Northwest Atlantic Nd isotope records during the past 30,000
years. Geochemistry Geophysics Geosystems 25(6143):3,246–3,213, https://doi.org/
10.1029/2019gc008271.
Prytherch, J., I.M. Brooks, P.M. Crill, B.F. Thornton, D.J. Salisbury, M. Tjernström,
L.G. Anderson, M.C. Geibel, and C. Humborg. 2017. Direct determination of the
air-sea CO2 gas transfer velocity in Arctic sea ice regions. Geophysical Research
Letters 44(8):3,770–3,778, https://doi.org/10.1002/2017gl073593.
Rafter, P.A., W.R. Gray, S.K.V. Hines, A. Burke, K.M. Costa, J. Gottschalk, M.P. Hain,
J.W.B. Rae, J.R. Southon, M.H. Walczak, and others. 2022. Global reorganiza-
tion of deep-sea circulation and carbon storage after the last ice age. Science
Advances 8(46), https://doi.org/10.1126/sciadv.abq5434.
Rahmstorf, S. 2002. Ocean circulation and climate during the past 120,000 years.
Nature 419(6903):207–214, https://doi.org/10.1038/nature01090.
Rahmstorf, S., J.E. Box, G. Feulner, M.E. Mann, A. Robinson, S. Rutherford, and
E.J. Schaffernicht. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean
overturning circulation. Nature Climate Change 5(5):475–480, https://doi.org/
10.1038/nclimate2554.
Rasmussen, S.O., M. Bigler, S.P. Blockley, T. Blunier, S.L. Buchardt, H.B. Clausen,
I. Cvijanovic, D. Dahl-Jensen, S.J. Johnsen, H. Fischer, and others. 2014. A strati-
graphic framework for abrupt climatic changes during the Last Glacial period
based on three synchronized Greenland ice-core records: Refining and extend-
ing the INTIMATE event stratigraphy. Quaternary Science Reviews 106:14–28,
https://doi.org/10.1016/j.quascirev.2014.09.007.
Repschläger, J., N. Zhao, D. Rand, L. Lisiecki, J. Muglia, S. Mulitza, A. Schmittner,
O. Cartapanis, H.A. Bauch, R. Schiebel, and G.H. Haug. 2021. Active North
Atlantic deepwater formation during Heinrich Stadial 1. Quaternary Science
Reviews 270:107145, https://doi.org/10.1016/j.quascirev.2021.107145.