September 2025

Oceanography | Vol. 38, No. 3

22

Kleiven, H.F., C. Kissel, C. Laj, U.S. Ninnemann, T.O. Richter, and E. Cortijo. 2008.

Reduced North Atlantic Deep Water coeval with the Glacial Lake Agassiz freshwater

outburst. Science 319(5859):60–64, https://doi.org/10.1126/science.1148924.

Lakeman, T.R., A.J. Pieńkowski, F.C. Nixon, M.F.A. Furze, S. Blasco, J.T. Andrews, and

E.L. King. 2018. Collapse of a marine-based ice stream during the early Younger

Dryas chronozone, western Canadian Arctic. Geology 46(3):211–214, https://doi.org/​

10.1130/g39665.1.

Lambeck, K., H. Rouby, A. Purcell, Y. Sun, and M. Sambridge. 2014. Sea level

and global ice volumes from the Last Glacial Maximum to the Holocene.

Proceedings of the National Academy of Sciences of the United States of

America 111(43):15,296–15,303, https://doi.org/10.1073/pnas.1411762111.

Le Bras, I., F. Straneo, M. Muilwijk, L.H. Smedsrud, F. Li, M.S. Lozier, and N.P. Holliday.

2021. How much Arctic fresh water participates in the subpolar overturning circu-

lation? Journal of Physical Oceanography 51(3):955–973, https://doi.org/10.1175/

jpo-d-20-0240.1.

LeGrand, P., and C. Wunsch. 1995. Constraints from paleotracer data

on the North Atlantic circulation during the Last Glacial Maximum.

Paleoceanography 10(6):1,011–1,045, https://doi.org/10.1029/95pa01455.

Li, L., M.S. Lozier, and F. Li. 2022. Century-long cooling trend in subpolar

North Atlantic forced by atmosphere: An alternative explanation. Climate

Dynamics 58(9–10):2,249–2,267, https://doi.org/10.1007/s00382-021-06003-4.

Lippold, J., J. Grützner, D. Winter, Y. Lahaye, A. Mangini, and M. Christl. 2009. Does

sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional

Overturning Circulation? Geophysical Research Letters 36(12), https://doi.org/​

10.1029/​2009GL038068.

Lippold, J., F. Pöppelmeier, F. Süfke, M. Gutjahr, T.J. Goepfert, P. Blaser, O. Friedrich,

J.M. Link, L. Wacker, S. Rheinberger, and S.L. Jaccard. 2019. Constraining

the Variability of the Atlantic Meridional Overturning Circulation During the

Holocene. Geophysical Research Letters 46(20):11,338–11,346, https://doi.org/​

10.1029/2019gl084988.

Little, C.M., M. Zhao, and M.W. Buckley. 2020. Do surface temperature indices reflect

centennial-timescale trends in Atlantic Meridional Overturning Circulation strength?

Geophysical Research Letters 47(22), https://doi.org/10.1029/2020gl090888.

Liu, Z., B.L.O. Bliesner, F. He, E.C. Brady, R. Tomas, P.U. Clark, A.E. Carlson,

J. Lynch-Stieglitz, W.B. Curry, E.J. Brook, and others. 2009. Transient simula-

tion of last deglaciation with a new mechanism for Bolling-Allerod warming.

Science 325(5938):310–314, https://doi.org/10.1126/science.1171041.

Liu, Z. 2023. Evolution of Atlantic Meridional Overturning Circulation since the last

glaciation: Model simulations and relevance to present and future. Philosophical

Transactions of the Royal Society A 381(2262):20220190, https://doi.org/10.1098/

rsta.2022.0190.

Luo, H., R.M. Castelao, A.K. Rennermalm, M. Tedesco, A. Bracco, P.L. Yager, and

T.L. Mote. 2016. Oceanic transport of surface meltwater from the southern Greenland

ice sheet. Nature Geoscience 9(7):528–532, https://doi.org/10.1038/ngeo2708.

Lynch-Stieglitz, J., and R.G. Fairbanks. 1994. A conservative tracer for glacial ocean cir-

culation from carbon isotope and palaeo-nutrient measurements in benthic foramin-

ifera. Nature 369(6478):308–310, https://doi.org/10.1038/369308a0.

Lynch-Stieglitz, J., T.F. Stocker, W. Broecker, and R. Fairbanks. 1995. The influence

of air-sea exchange on the isotopic composition of oceanic carbon: Observations

and modeling. Global Biogeochemical Cycles, 9:653–665, https://doi.org/​10.1029/​

95GB02574.

Lynch-Stieglitz, J., M.W. Schmidt, L.G. Henry, W.B. Curry, L.C. Skinner, S. Mulitza,

R. Zhang, and P. Chang. 2014. Muted change in Atlantic overturning circulation over

some glacial-aged Heinrich events. Nature Geoscience 7(2):144–150, https://doi.org/​

10.1038/ngeo2045.

Lynch-Stieglitz, J. 2017. The Atlantic Meridional Overturning Circulation and abrupt cli-

mate change. Annual Review of Marine Science 9(1):83–104, https://doi.org/10.1146/

annurev-marine-010816-060415.

Madan, G., A. Gjermundsen, S.C. Iversen, and J.H. LaCasce. 2024. The weaken-

ing AMOC under extreme climate change. Climate Dynamics 62(2):1,291–1,309,

https://doi.org/10.1007/s00382-023-06957-7.

Manabe, S., and R.J. Stouffer. 1995. Simulation of abrupt climate change induced

by freshwater input to the North Atlantic Ocean. Nature 378(6553):165–167,

https://doi.org/​10.1038/378165a0.

Marchal, O., and W.B. Curry. 2008. On the abyssal circulation in the glacial

Atlantic. Journal of Physical Oceanography 38(9):2,014–2,037, https://doi.org/​

10.1175/2008jpo3895.1.

Marchal, O., and N. Zhao. 2021. On the estimation of deep Atlantic ventilation from fos-

sil radiocarbon records: Part II. (In)consistency with modern estimates. Journal of

Physical Oceanography 51(8):2,681–2,704, https://doi.org/10.1175/jpo-d-20-0314.1.

Marchal, O., and A. Condron. 2025. On the spreading of glacial meltwater in the

western North Atlantic: Part I. Role of Dynamical Instabilities. Journal of Physical

Oceanography 55(2):155–174, https://doi.org/10.1175/JPO-D-23-0170.1.

Marchitto, T.M., and W.S. Broecker. 2006. Deep water mass geometry in the gla-

cial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca.

Geochemistry Geophysics Geosystems 7(12), https://doi.org/10.1029/2006gc001323.

Marcott, S.A., T.K. Bauska, C. Buizert, E.J. Steig, J.L. Rosen, K.M. Cuffey, T.J. Fudge,

J.P. Severinghaus, J. Ahn, M.L. Kalk, and others. 2014. Centennial-scale changes

in the global carbon cycle during the last deglaciation. Nature 514:616–619,

https://doi.org/​10.1038/nature13799.

Marshall, J., and K. Speer. 2012. Closure of the meridional overturning circulation

through Southern Ocean upwelling. Nature Geoscience 5(3):1–10, https://doi.org/​

10.1038/ngeo1391.

McCave, I.N., B. Manighetti, and S.G. Robinson. 1995. Sortable silt and fine sediment

size/composition slicing: Parameters for palaeocurrent speed and palaeoceanogra-

phy. Paleoceanography 10(3):593–610, https://doi.org/10.1029/94pa03039.

McCave, I.N., and I.R. Hall. 2006. Size sorting in marine muds: Processes, pit-

falls, and prospects for paleoflow-speed proxies. Geochemistry, Geophysics,

Geosystems 7(10), https://doi.org/10.1029/2006gc001284.

McCave, I.N., D.J.R. Thornalley, and I.R. Hall. 2017. Relation of sortable silt grain-size

to deep-sea current speeds: Calibration of the ‘Mud Current Meter.’ Deep Sea

Research Part I 127:1–12, https://doi.org/10.1016/j.dsr.2017.07.003.

McClymont, E.L., H.L. Ford, S.L. Ho, J.C. Tindall, A.M. Haywood, M. Alonso-Garcia,

I. Bailey, M.A. Berke, K. Littler, M.O. Patterson, and others. 2020. Lessons from

a high-CO2 world: An ocean view from ~3 million years ago. Climate of the

Past 16(4):1,599–1,615, https://doi.org/10.5194/cp-16-1599-2020.

McManus, J.F., D.W. Oppo, and J.L. Cullen. 1999. A 0.5-million-year record of

millennial-​scale climate variability in the North Atlantic. Science 283(5404):971–975,

https://doi.org/​10.1126/science.283.5404.971.

McManus, J.F., R. François, J.M. Gherardi, L.D. Keigwin, and S. Brown-Leger. 2004.

Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial

climate changes. Nature 428(6985):834–837, https://doi.org/10.1038/nature02494.

Menviel, L., A. Timmermann, O.E. Timm, and A. Mouchet. 2011. Deconstructing the Last

Glacial termination: The role of millennial and orbital-scale forcings. Quaternary

Science Reviews 30(9–10):1,155–1,172, https://doi.org/10.1016/j.quascirev.2011.02.005.

Muglia, J., and A. Schmittner. 2021. Carbon isotope constraints on glacial Atlantic

meridional overturning: Strength vs depth. Quaternary Science Reviews 257:106844,

https://doi.org/10.1016/j.quascirev.2021.106844.

Mulitza, S., M. Prange, J. Stuut, M. Zabel, T. von Dobeneck, A.C. Itambi, J. Nizou,

M. Schulz, and G. Wefer. 2008. Sahel megadroughts triggered by glacial slowdowns

of Atlantic meridional overturning. Paleoceanography 23(4), https://doi.org/​10.1029/​

2008pa001637.

Murton, J.B., M.D. Bateman, S.R. Dallimore, J.T. Teller, and Z. Yang. 2010. Identification

of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean.

Nature 464(7289):740–743, https://doi.org/10.1038/nature08954.

Ng, H.C., L.F. Robinson, J.F. McManus, K.J. Mohamed, A.W. Jacobel, R.F. Ivanovic,

L.J. Gregoire, and T. Chen. 2018. Coherent deglacial changes in western Atlantic

Ocean circulation. Nature Communications 9(1):2947, https://doi.org/10.1038/

s41467-018-05312-3.

North Greenland Ice Core Project Members. 2004. High-resolution record of Northern

Hemisphere climate extending into the last interglacial period. Nature 431:147–151,

https://doi.org/10.1038/nature02805.

Oppo, D.W., G. Gebbie, K.-F. Huang, W.B. Curry, T.M. Marchitto, and K.R. Pietro.

2018. Data constraints on glacial Atlantic Water mass geometry and proper-

ties. Paleoceanography and Paleoclimatology 298(5599):33(9):1,013–1,034,

https://doi.org/​10.1029/2018pa003408.

Pacini, A., and R.S. Pickart. 2023. Wind-forced upwelling along the West Greenland

shelfbreak: Implications for Labrador Sea Water formation. Journal of Geophysical

Research: Oceans 128(3), https://doi.org/10.1029/2022jc018952.

Peltier, W.R., D.F. Argus, and R. Drummond. 2015. Space geodesy constrains ice age

terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical

Research: Solid Earth 120(1):450–487, https://doi.org/10.1002/2014jb011176.

Pennelly, C., and P.G. Myers. 2020. Introducing LAB60: A 1/60° NEMO 3.6

numerical simulation of the Labrador Sea. Geoscientific Model

Development 13(10):4,959–4,975, https://doi.org/10.5194/gmd-13-4959-2020.

Pickart, R.S., and M.A. Spall. 2007. Impact of Labrador Sea convection on

the North Atlantic Meridional Overturning Circulation. Journal of Physical

Oceanography 37(9):2,207–2,227, https://doi.org/10.1175/jpo3178.1.

Pöppelmeier, F., P. Blaser, M. Gutjahr, F. Süfke, D.J.R. Thornalley, J. Grützner, K.A. Jakob,

J.M. Link, S. Szidat, and J. Lippold. 2019. Influence of ocean circulation and benthic

exchange on deep Northwest Atlantic Nd isotope records during the past 30,000

years. Geochemistry Geophysics Geosystems 25(6143):3,246–3,213, https://doi.org/​

10.1029/2019gc008271.

Prytherch, J., I.M. Brooks, P.M. Crill, B.F. Thornton, D.J. Salisbury, M. Tjernström,

L.G. Anderson, M.C. Geibel, and C. Humborg. 2017. Direct determination of the

air-sea CO2 gas transfer velocity in Arctic sea ice regions. Geophysical Research

Letters 44(8):3,770–3,778, https://doi.org/10.1002/2017gl073593.

Rafter, P.A., W.R. Gray, S.K.V. Hines, A. Burke, K.M. Costa, J. Gottschalk, M.P. Hain,

J.W.B. Rae, J.R. Southon, M.H. Walczak, and others. 2022. Global reorganiza-

tion of deep-sea circulation and carbon storage after the last ice age. Science

Advances 8(46), https://doi.org/10.1126/sciadv.abq5434.

Rahmstorf, S. 2002. Ocean circulation and climate during the past 120,000 years.

Nature 419(6903):207–214, https://doi.org/10.1038/nature01090.

Rahmstorf, S., J.E. Box, G. Feulner, M.E. Mann, A. Robinson, S. Rutherford, and

E.J. Schaffernicht. 2015. Exceptional twentieth-century slowdown in Atlantic Ocean

overturning circulation. Nature Climate Change 5(5):475–480, https://doi.org/​

10.1038/​nclimate2554.

Rasmussen, S.O., M. Bigler, S.P. Blockley, T. Blunier, S.L. Buchardt, H.B. Clausen,

I. Cvijanovic, D. Dahl-Jensen, S.J. Johnsen, H. Fischer, and others. 2014. A strati-

graphic framework for abrupt climatic changes during the Last Glacial period

based on three synchronized Greenland ice-core records: Refining and extend-

ing the INTIMATE event stratigraphy. Quaternary Science Reviews 106:14–28,

https://doi.org/​10.1016/j.quascirev.2014.09.007.

Repschläger, J., N. Zhao, D. Rand, L. Lisiecki, J. Muglia, S. Mulitza, A. Schmittner,

O. Cartapanis, H.A. Bauch, R. Schiebel, and G.H. Haug. 2021. Active North

Atlantic deepwater formation during Heinrich Stadial 1. Quaternary Science

Reviews 270:107145, https://doi.org/10.1016/j.quascirev.2021.107145.