September 2025 | Oceanography
11
to oil spill modeling, shipping route optimization, and maritime
tourism, to name a few. The value of such resources for catalyz-
ing research and expanding the community of users engaged with
ocean currents is tremendous.
As this commentary outlines, the track record of ocean model
advancements is remarkable, with no obvious end in sight. The
knowledge and tools for disseminating and analyzing massive ocean
current simulations currently exist. Decisions on future priorities
with broad community input and engagement are now required.
The prospects for future ocean model improvements and refine-
ment are very bright, and many are straightforward to implement.
REFERENCES
Almansi, M., R. Gelderloos, T. Haine, A. Saberi, and A. Siddiqui. 2019. OceanSpy:
A Python package to facilitate ocean model data analysis and visualization. Journal
of Open Source Software 4(39):1506, https://doi.org/10.21105/joss.01506.
Arbic, B.K., M.H. Alford, J.K. Ansong, M.C. Buijsman, R.B. Ciotti, J.T. Farrar,
R.W. Hallberg, C.E. Henze, C.H. Hill, C.A. Luecke, and others. 2018. A primer on
global internal tide and internal gravity wave continuum modeling in HYCOM
and MITgcm. Pp. 307–392 in New Frontiers in Operational Oceanography.
E. Chassignet, A. Pascual, J. Tintoré, and J. Verron, eds, GODAE OceanView,
https://doi.org/10.17125/gov2018.ch13.
Argo. 2020. Argo float data and metadata from Global Data Assembly Centre
(Argo GDAC), https://doi.org/10.17882/42182.
Barker, M., S.D. Olabarriaga, N. Wilkins-Diehr, S. Gesing, D.S. Katz, S. Shahand,
S. Henwood, T. Glatard, K. Jeffrey, B. Corrie, and others. 2019. The global
impact of science gateways, virtual research environments and virtual laborato-
ries. Future Generation Computer Systems 95:240–248, https://doi.org/10.1016/
j.future.2018.12.026.
Boyes, H., and T. Watson. 2022. Digital twins: An analysis framework and open issues.
Computers in Industry 143:103763, https://doi.org/10.1016/j.compind.2022.103763.
Chen, G., J. Yang, B. Huang, C. Ma, F. Tian, L. Ge, L. Xia, and J. Li. 2023. Toward digital
twin of the ocean: From digitalization to cloning. Intelligent Marine Technology and
Systems 1(3), https://doi.org/10.1007/s44295-023-00003-2.
Fox-Kemper, B., A. Adcroft, C.W. Böning, E.P. Chassignet, E. Curchitser,
G. Danabasoglu, C. Eden, M.H. England, R. Gerdes, R.J. Greatbatch, and others.
2019. Challenges and prospects in ocean circulation models. Frontiers in Marine
Science 6:65, https://doi.org/10.3389/fmars.2019.00065.
Grossman, R.L. 2023. Ten lessons for data sharing with a data commons. Scientific
Data 10:120, https://doi.org/10.1038/s41597-023-02029-x.
Haine, T.W.N., R. Gelderloos, MA. Jiminez-Urias, A.H. Siddiqui, G. Lemson,
D. Medvedev, A. Szalay, R.P. Abernathy, M. Almansi, and C.N. Hill. 2021. Is compu-
tational oceanography coming of age? Bulletin of the American Meteorological
Society 102(8):E1481–E1493, https://doi.org/10.1175/BAMS-D-20-0258.1.
Jiang, W., T.W.N. Haine, and M. Almansi. 2023. Seaduck: A Python package for
Eulerian and Lagrangian interpolation on ocean datasets. Journal of Open Source
Software 8(92):5967, https://doi.org/10.21105/joss.05967.
Le Moigne, J., M.M. Little, R.A. Morris, N.C. Oza, K.J. Ranson, H. Riris, L.J. Rogers, and
B.D. Smith. 2023. Earth System Digital Twin (ESDT) Architecture Framework. NASA
Technical Report, Earth Science Technology Office, NASA, 12 pp.
Lee, T., S. Hakkinen, K. Kelly, B. Qiu, H. Bonekamp, and E. Lindstrom. 2010. Satellite
observations of ocean circulation changes associated with climate variability.
Oceanography 23(4):70–81, https://doi.org/10.5670/oceanog.2010.06.
Li, Y., E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay,
and G. Eyink. 2008. A public turbulence database cluster and applications to
study Lagrangian evolution of velocity increments in turbulence. Journal of
Turbulence 9:N31, https://doi.org/10.1080/14685240802376389.
Medvedev, D., G. Lemson, and M. Rippin. 2016. SciServer compute: Bringing analy-
sis close to the data. Pp. 1–4 in Proceedings of the 28th International Conference
on Scientific and Statistical Database Management - SSDBM ’16.ACM Press,
https://doi.org/10.1145/2949689.2949700.
Moore, G.E. 1975. Progress in digital integrated electronics. Pp. 11–13 in International
Electron Devices Meeting. IEEE, http://www.eng.auburn.edu/~agrawvd/COURSE/
E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf.
NASEM (National Academies of Sciences, Engineering, and Medicine). 2024.
Foundational Research Gaps and Future Directions for Digital Twins. The National
Academies Press, Washington, DC, 202 pp., https://doi.org/10.17226/26894.
Riser, S.C., H.J. Freeland, D. Roemmich, S. Wiffjels, A. Troisi, M. Belbéoch, D. Gilbert,
J. Xu, S. Pouliquen, A. Thresher, and others. 2016. Fifteen years of ocean obser-
vations with the global Argo array. Nature Climate Change 6(2):145–153,
https://doi.org/10.1038/nclimate2872.
Rocha, C.B., T.K. Chereskin, S.T. Gille, and D. Menemenlis. 2016. Mesoscale to
submesoscale wavenumber spectra in Drake Passage. Journal of Physical
Oceanography 46(2):601–620, https://doi.org/10.1175/JPO-D-15-0087.1.
Shnapp, R., S. Brizzolara, M.M. Neamtu-Halic, A. Gambino, and M. Holzner. 2023.
Universal alignment in turbulent pair dispersion. Nature Communications 14:4195,
https://doi.org/10.1038/s41467-023-39903-6.
Taylor, J.R., and A.F. Thompson. 2023. Submesoscale dynamics in the upper
ocean. Annual Review of Fluid Mechanics 55:103–127, https://doi.org/10.1146/
annurev-fluid-031422-095147.
Vance, T.C., T. Huang, and K.A. Butler. 2024. Big data in Earth science: Emerging prac-
tice and promise. Science 383(6688), https://doi.org/10.1126/science.adh9607.
Vinogradova, N.T., T.M. Pavelsky, J.T. Farrar, F. Hossain, and L.-L. Fu. 2025. A new
look at Earth’s water and energy with SWOT. Nature Water 3:27–37, https://doi.org/
10.1038/s44221-024-00372-w.
von Schuckmann, K., L. Moreira, M. Grégoire, M. Marcos, J. Staneva, P. Brasseur,
G. Garric, P. Lionello, J. Karstensen, and G. Neukermans, eds. 2024. 8th edition of
the Copernicus Ocean State Report (OSR8). Copernicus Publications, State Planet,
4-osr8, https://doi.org/10.5194/sp-4-osr8.
Yang, X., W. Zhang, M. Abkar, and W. Anderson. 2024. Computational fluid dynam-
ics: Its carbon footprint and role in carbon reduction. Journal of Renewable and
Sustainable Energy 16:055906, https://doi.org/10.1063/5.0217320.
ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under grants 1835640
and 2103874, by the Institute for Data Intensive Engineering and Science at Johns
Hopkins University, and by the Alfred P. Sloan Foundation.
AUTHOR
Thomas W.N. Haine (thomas.haine@jhu.edu), Earth & Planetary Sciences,
Johns Hopkins University, Baltimore, MD, USA.
ARTICLE CITATION
Haine, T.W.N. 2025. Democratize the data: A new way to analyze and design ocean
models. Oceanography 38(3):7–11, https://doi.org/10.5670/oceanog.2025.e303.
COPYRIGHT & USAGE
This is an open access article made available under the terms of the Creative
Commons Attribution 4.0 International License (https://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in
any medium or format as long as users cite the materials appropriately, provide a
link to the Creative Commons license, and indicate the changes that were made
to the original content.