September 2025

September 2025 | Oceanography

11

to oil spill modeling, shipping route optimization, and maritime

tourism, to name a few. The value of such resources for catalyz-

ing research and expanding the community of users engaged with

ocean currents is tremendous.

As this commentary outlines, the track record of ocean model

advancements is remarkable, with no obvious end in sight. The

knowledge and tools for disseminating and analyzing massive ocean

current simulations currently exist. Decisions on future priorities

with broad community input and engagement are now required.

The prospects for future ocean model improvements and refine-

ment are very bright, and many are straightforward to implement.

REFERENCES

Almansi, M., R. Gelderloos, T. Haine, A. Saberi, and A. Siddiqui. 2019. OceanSpy:

A Python package to facilitate ocean model data analysis and visualization. Journal

of Open Source Software 4(39):1506, https://doi.org/10.21105/joss.01506.

Arbic, B.K., M.H. Alford, J.K. Ansong, M.C. Buijsman, R.B. Ciotti, J.T. Farrar,

R.W. Hallberg, C.E. Henze, C.H. Hill, C.A. Luecke, and others. 2018. A primer on

global internal tide and internal gravity wave continuum modeling in HYCOM

and MITgcm. Pp. 307–392 in New Frontiers in Operational Oceanography.

E. Chassignet, A. Pascual, J. Tintoré, and J. Verron, eds, GODAE OceanView,

https://doi.org/10.17125/gov2018.ch13.

Argo. 2020. Argo float data and metadata from Global Data Assembly Centre

(Argo GDAC), https://doi.org/10.17882/42182.

Barker, M., S.D. Olabarriaga, N. Wilkins-Diehr, S. Gesing, D.S. Katz, S. Shahand,

S. Henwood, T. Glatard, K. Jeffrey, B. Corrie, and others. 2019. The global

impact of science gateways, virtual research environments and virtual laborato-

ries. Future Generation Computer Systems 95:240–248, https://doi.org/10.1016/​

j.future.2018.12.026.

Boyes, H., and T. Watson. 2022. Digital twins: An analysis framework and open issues.

Computers in Industry 143:103763, https://doi.org/10.1016/j.compind.2022.103763.

Chen, G., J. Yang, B. Huang, C. Ma, F. Tian, L. Ge, L. Xia, and J. Li. 2023. Toward digital

twin of the ocean: From digitalization to cloning. Intelligent Marine Technology and

Systems 1(3), https://doi.org/10.1007/s44295-023-00003-2.

Fox-Kemper, B., A. Adcroft, C.W. Böning, E.P. Chassignet, E. Curchitser,

G. Danabasoglu, C. Eden, M.H. England, R. Gerdes, R.J. Greatbatch, and others.

2019. Challenges and prospects in ocean circulation models. Frontiers in Marine

Science 6:65, https://doi.org/10.3389/fmars.2019.00065.

Grossman, R.L. 2023. Ten lessons for data sharing with a data commons. Scientific

Data 10:120, https://doi.org/10.1038/s41597-023-02029-x.

Haine, T.W.N., R. Gelderloos, MA. Jiminez-Urias, A.H. Siddiqui, G. Lemson,

D. Medvedev, A. Szalay, R.P. Abernathy, M. Almansi, and C.N. Hill. 2021. Is compu-

tational oceanography coming of age? Bulletin of the American Meteorological

Society 102(8):E1481–E1493, https://doi.org/10.1175/BAMS-D-20-0258.1.

Jiang, W., T.W.N. Haine, and M. Almansi. 2023. Seaduck: A Python package for

Eulerian and Lagrangian interpolation on ocean datasets. Journal of Open Source

Software 8(92):5967, https://doi.org/10.21105/joss.05967.

Le Moigne, J., M.M. Little, R.A. Morris, N.C. Oza, K.J. Ranson, H. Riris, L.J. Rogers, and

B.D. Smith. 2023. Earth System Digital Twin (ESDT) Architecture Framework. NASA

Technical Report, Earth Science Technology Office, NASA, 12 pp.

Lee, T., S. Hakkinen, K. Kelly, B. Qiu, H. Bonekamp, and E. Lindstrom. 2010. Satellite

observations of ocean circulation changes associated with climate variability.

Oceanography 23(4):70–81, https://doi.org/10.5670/oceanog.2010.06.

Li, Y., E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay,

and G. Eyink. 2008. A public turbulence database cluster and applications to

study Lagrangian evolution of velocity increments in turbulence. Journal of

Turbulence 9:N31, https://doi.org/10.1080/14685240802376389.

Medvedev, D., G. Lemson, and M. Rippin. 2016. SciServer compute: Bringing analy-

sis close to the data. Pp. 1–4 in Proceedings of the 28th International Conference

on Scientific and Statistical Database Management - SSDBM ’16.ACM Press,

https://doi.org/​10.1145/2949689.2949700.

Moore, G.E. 1975. Progress in digital integrated electronics. Pp. 11–13 in International

Electron Devices Meeting. IEEE, http://www.eng.auburn.edu/~agrawvd/COURSE/

E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2024.

Foundational Research Gaps and Future Directions for Digital Twins. The National

Academies Press, Washington, DC, 202 pp., https://doi.org/10.17226/26894.

Riser, S.C., H.J. Freeland, D. Roemmich, S. Wiffjels, A. Troisi, M. Belbéoch, D. Gilbert,

J. Xu, S. Pouliquen, A. Thresher, and others. 2016. Fifteen years of ocean obser-

vations with the global Argo array. Nature Climate Change 6(2):145–153,

https://doi.org/​10.1038/nclimate2872.

Rocha, C.B., T.K. Chereskin, S.T. Gille, and D. Menemenlis. 2016. Mesoscale to

submesoscale wavenumber spectra in Drake Passage. Journal of Physical

Oceanography 46(2):601–620, https://doi.org/10.1175/JPO-D-15-0087.1.

Shnapp, R., S. Brizzolara, M.M. Neamtu-Halic, A. Gambino, and M. Holzner. 2023.

Universal alignment in turbulent pair dispersion. Nature Communications 14:4195,

https://doi.org/10.1038/s41467-023-39903-6.

Taylor, J.R., and A.F. Thompson. 2023. Submesoscale dynamics in the upper

ocean. Annual Review of Fluid Mechanics 55:103–127, https://doi.org/10.1146/

annurev-fluid-031422-095147.

Vance, T.C., T. Huang, and K.A. Butler. 2024. Big data in Earth science: Emerging prac-

tice and promise. Science 383(6688), https://doi.org/10.1126/science.adh9607.

Vinogradova, N.T., T.M. Pavelsky, J.T. Farrar, F. Hossain, and L.-L. Fu. 2025. A new

look at Earth’s water and energy with SWOT. Nature Water 3:27–37, https://doi.org/​

10.1038/s44221-024-00372-w.

von Schuckmann, K., L. Moreira, M. Grégoire, M. Marcos, J. Staneva, P. Brasseur,

G. Garric, P. Lionello, J. Karstensen, and G. Neukermans, eds. 2024. 8th edition of

the Copernicus Ocean State Report (OSR8). Copernicus Publications, State Planet,

4-osr8, https://doi.org/10.5194/sp-4-osr8.

Yang, X., W. Zhang, M. Abkar, and W. Anderson. 2024. Computational fluid dynam-

ics: Its carbon footprint and role in carbon reduction. Journal of Renewable and

Sustainable Energy 16:055906, https://doi.org/10.1063/5.0217320.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under grants 1835640

and 2103874, by the Institute for Data Intensive Engineering and Science at Johns

Hopkins University, and by the Alfred P. Sloan Foundation.

AUTHOR

Thomas W.N. Haine (thomas.haine@jhu.edu), Earth & Planetary Sciences,

Johns Hopkins University, Baltimore, MD, USA.

ARTICLE CITATION

Haine, T.W.N. 2025. Democratize the data: A new way to analyze and design ocean

models. Oceanography 38(3):7–11, https://doi.org/10.5670/oceanog.2025.e303.

COPYRIGHT & USAGE

This is an open access article made available under the terms of the Creative

Commons Attribution 4.0 International License (https://creativecommons.org/licenses/

by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in

any medium or format as long as users cite the materials appropriately, provide a

link to the Creative Commons license, and indicate the changes that were made

to the original content.