Oceanography | Vol. 38, No. 2
82
Castillo Cieza, S.A., R.H.R. Stanley, P. Marrec, D.N. Fontaine, E.T. Crockford,
D.J. McGillicuddy Jr., A. Mehta, S. Menden-Deuer, E.E. Peacock, T.A. Ryenearson,
and others. 2024. Unusual Hemiaulus bloom influences ocean productivity in
Northeastern US Shelf waters. Biogeosciences 21:1,235–1,257, https://doi.org/
10.5194/bg-21-1235-2024.
Dixon, J.M., M. Taniguchi, and J.S. Lindsey. 2005. PhotochemCAD 2: A refined
program with accompanying spectral databases for photochemical calcula
tions. Photochemistry and Photobiology 81:212–213, https://doi.org/10.1111/
j.1751-1097.2005.tb01544.x.
Falkowski, P., and D.A. Kiefer. 1985. Chlorophyll a fluorescence in phyto
plankton: Relationship to photosynthesis and biomass. Journal of Plankton
Research 7(5):715–731, https://doi.org/10.1093/plankt/7.5.715.
Geider, R.J. 1987. Light and temperature dependence of the carbon to chlorophyll
a ratio in microalgae and cyanobacteria: Implications for physiology and growth
of phytoplankton. New Phytologist 106(1):1–34, https://doi.org/10.1111/j.1469-8137.
1987.tb04788.x.
Graff, J.R., T.K. Westberry, A.J. Milligan, M.B. Brown, G. Dall’Olmo, V. van Dongen-
Vogels, K.M. Reifel, and M.J. Behrenfeld. 2015. Analytical phytoplankton car
bon measurements spanning diverse ecosystems. Deep Sea Research
Part I 102:16–25, https://doi.org/10.1016/j.dsr.2015.04.006.
Holm-Hansen, O., A.F. Amos, and C.D. Hewes. 2000. Reliability of estimat
ing chlorophyll a concentrations in Antarctic waters by measurement of in
situ chlorophyll a fluorescence. Marine Ecology Progress Series 196:103–110,
https://doi.org/10.3354/meps196103.
IOC (Intergovernmental Oceanographic Commission of UNESCO). 2013. Ocean
Data Standards Volume 3: Recommendation for a Quality Flag Scheme for the
Exchange of Oceanographic and Marine Meteorological Data. Version 1, IOC
Manuals and Guides, 54, Vol. 3., 12 pp., UNESCO, Paris, https://www.ioccp.org/
images/D4standards/IOC-OceanDataStandards54-3-2013.pdf.
Jakobsen, H.H., and S. Markager. 2016. Carbon-to-chlorophyll ratio for phytoplank
ton in temperate coastal waters: Seasonal patterns and relationship to nutri
ents. Limnology and Oceanography 61(5):1,853–1,868, https://doi.org/10.1002/
lno.10338.
Kaiser, J., and J. Brainard. 2023. Ready, set, share! Science 379(6630):322–325,
https://doi.org/10.1126/science.adg8142.
Marañón, E., F. Van Wambeke, J. Uitz, E.S. Boss, C. Dimier, J. Dinasquet, A. Engel,
N. Haëntjens, M. Pérez-Lorenzo, V. Taillandier, and B. Zäncker. 2021. Deep max
ima of phytoplankton biomass, primary production and bacterial production in
the Mediterranean Sea. Biogeosciences 18:1,749–1,767, https://doi.org/10.5194/
bg-18-1749-2021.
Marra, J. 1998. Analysis of diel variability in chlorophyll fluorescence.
Oceanographic Literature Review 4(45):617.
Marrec, P., H. McNair, G. Franzè, F. Morison, J.P. Strock, and S. Menden-Deuer.
2021. Seasonal variability in planktonic food web structure and function of the
Northeast U.S. Shelf. Limnology & Oceanography 66:1,440–1,458, https://doi.org/
10.1002/lno.11696.
Menden-Deuer, S., P. Marrec, and A. Herbst. 2022. Underway discrete chlo
rophyll and post-calibrated underway fluorometer data during NES-LTER
Transect cruises, ongoing since 2019 ver 1. Environmental Data Initiative,
https://doi.org/10.6073/pasta/16c8e5937a860c882b524fda73408baf
(accessed 2024-08-14).
Mignot, A., H. Claustre, J. Uitz, A. Poteau, F. D’Ortenzio, and X. Xing. 2014.
Understanding the seasonal dynamics of phytoplankton biomass and the
deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float
investigation. Global Biogeochemical Cycles 28(8):856–876, https://doi.org/
10.1002/2013GB004781.
Palevsky, H.I., S. Clayton, H. Benway, M. Maheigan, D. Atamanchuk, R. Battisti,
J. Batryn, A. Bourbonnais, E.M. Briggs, F. Carvalho, and others. 2024. A model
for community-driven development of best practices: The Ocean Observatories
Initiative Biogeochemical Sensor Data Best Practices and User Guide. Frontiers
in Marine Sciences 11:1358591, https://doi.org/10.3389/fmars.2024.1358591.
Smyth, T., D. Moffat, G. Tarran, S. Sathyendranath, F. Ribalet, and J. Casey. 2023.
Determining drivers of phytoplankton carbon to chlorophyll ratio at Atlantic
Basin scale. Frontiers in Marine Science 10:1191216, https://doi.org/10.3389/
fmars.2023.1191216.
Sosik, H. 2019. TSG (SeaBird SBE-21) data as collected during the cruise EN644,
NES-LTER. Rolling Deck to Repository (R2R), https://doi.org/10.7284/133997
(accessed 2024-08-23).
Sosik, H. 2020a. TSG (SeaBird SBE-21) data as collected during the cruise EN649,
NES-LTER # 4. Rolling Deck to Repository (R2R), https://doi.org/10.7284/140244
(accessed 2024-08-23).
Sosik, H. 2020b. TSG (SeaBird SBE-21) data as collected during the cruise EN655,
NES-LTER. Rolling Deck to Repository (R2R), https://doi.org/10.7284/140353
(accessed 2024-08-23).
Sosik, H. 2020c. TSG (SeaBird SBE-21) data as collected during the cruise
EN657, NES-LTER transect #7. Rolling Deck to Repository (R2R), https://doi.org/
10.7284/141686 (accessed 2024-08-23).
Sosik, H. 2021a. TSG (SeaBird SBE-21) data as collected during the cruise EN661,
NES-LTER transect #8. Rolling Deck to Repository (R2R), https://doi.org/
10.7284/146047 (accessed 2024-08-23).
Sosik, H. 2021b. TSG (SeaBird SBE-21) data as collected during the cruise EN668,
NES-LTER transect #9. Rolling Deck to Repository (R2R), https://doi.org/
10.7284/146138 (accessed 2024-08-23).
Sosik, H.M., E.T. Crockford, E. Peacock, T. Rynearson, D. Fontaine, S. Menden-
Deuer, P. Marrec, and OOI CGSN Data Team. 2023. Size-fractionated chlorophyll
from water column bottle samples collected during NES-LTER Transect cruises,
ongoing since 2017. ver 2. Environmental Data Initiative, https://doi.org/10.6073/
pasta/a8170b4f30fec183592ea7868d7bc1d4 (accessed 2024-08-23).
Stoer, A.C., and K. Fennel. 2024. Carbon-centric dynamics of Earth’s marine phyto
plankton. Proceedings of the National Academy of Sciences of the United States
of America 121(45):e2405354121, https://doi.org/10.1073/pnas.2405354121.
Wasmund, N., I., Topp, and D. Schories. 2006. Optimising the storage and
extraction of chlorophyll samples. Oceanologia 48(1).
Wilkinson, M.D., M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.W. Boiten, L.B. da Silva Santos, P.E. Bourne, and J. Bouwman.
2016. The FAIR Guiding Principles for scientific data management and steward
ship. Scientific Data 3(1):1–9, https://doi.org/10.1038/sdata.2016.18.
Xing, X., H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet.
2012. Quenching correction for in vivo chlorophyll fluorescence acquired
by autonomous platforms: A case study with instrumented elephant seals
in the Kerguelen region (Southern Ocean). Limnology and Oceanography:
Methods 10(7):483–495, https://doi.org/10.4319/lom.2012.10.483.
Xing, X., H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and
F. d’Ortenzio. 2017. Correction of profiles of in-situ chlorophyll fluorometry for the
contribution of fluorescence originating from non-algal matter. Limnology and
Oceanography: Methods 15(1):80–93, https://doi.org/10.1002/lom3.10144.
ACKNOWLEDGMENTS
This work was supported by awards from the National Science Foundation
(NES-LTER Phase 1: OCE-1655686, NES-LTER Phase 2: OCE-2322676). AH was
supported by a Summer Undergraduate Research Fellowship in Oceanography
(SURFO; National Science Foundation REU grant # OCE- 1757572). Support
through the NASA campaign EXport Processes in the global Ocean from RemoTe
Sensing (EXPORTS; grant 80NSSC17K0716) is acknowledged. We thank the stu
dents, staff and PIs of the NES-LTER project for their support, and the leadership
of Heidi Sosik (Woods Hole Oceanographic Institution). We thank the captains
Armanetti, Beuth, and Carty, the R/V Endeavor Crew, and the work of the marine
technicians at the University of Rhode Island. Brian Heikes, David Smith, and
Jamie Buck are acknowledged for all the effort they put into the SURFO program.
We appreciated the enthusiasm and effort of the University of Rhode Island stu
dents in the Graduate School of Oceanography class OCG561 (2024), who tested
this lab activity and substantively improved the final product.
AUTHORS
Pierre Marrec (pmarrec@uri.edu), Graduate School of Oceanography, University
of Rhode Island, Narragansett, RI, USA. Amanda Herbst, Graduate School of
Oceanography, University of Rhode Island, Narragansett, RI, USA, and Bren School
of Environmental Science & Management, University of California, Santa Barbara,
CA, USA. Stace E. Beaulieu, Woods Hole Oceanographic Institution, Woods Hole,
MA, USA. Susanne Menden-Deuer, Graduate School of Oceanography, University
of Rhode Island, Narragansett, RI, USA.
ARTICLE CITATION
Marrec, P., A. Herbst, S.E. Beaulieu, and S. Menden-Deuer. 2025. Hands-on
post-calibration of in vivo fluorescence using open access data: A guided jour
ney from fluorescence to phytoplankton biomass. Oceanography 38(2):73–82,
https://doi.org/10.5670/oceanog.2025.314.
COPYRIGHT & USAGE
This is an open access article made available under the terms of the Creative
Commons Attribution 4.0 International License (https://creativecommons.org/
licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and repro
duction in any medium or format as long as users cite the materials appropriately,
provide a link to the Creative Commons license, and indicate the changes that
were made to the original content.