June 2025

Welcome to interactive presentation, created with Publuu. Enjoy the reading!

Oceanography | Vol. 38, No. 2

22

Carter, A. 2025. YOLOv11n Object Detection Model for Mothra Hydrothermal Vent

Site, https://doi.org/10.57967/hf/4997.

Cathalot, C., E.G Roussel, A. Perhirin, V. Creff, J.-P. Donval, V. Guyader. G. Roulette,

J. Gula, C. Tamburini, M. Garel, A. Godfroy, and P.-M. Sarradin. 2021.

Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial bio­

mass production. Nature Communications 12:6861, https://doi.org/10.1038/

s41467-021-26877-6.

Chadwick, W.W. Jr., K.V. Cashman, R.W. Embley, H. Matsumoto, R.P. Dziak,

C.E.J. de Ronde, T.K. Lau, N.D. Deardorff, and S.G. Merle. 2008. Direct video

and hydrophone observations of submarine explosive eruptions at NW Rota-1

volcano, Mariana arc. Journal of Geophysical Research 113(B8), https://doi.org/​

10.1029/2007JB005215.

Chen, C., T.-H. Lin, H.K. Watanabe, T. Akamatsu, and S. Kawagucci. 2021.

Baseline soundscapes of deep-sea habitats reveal heterogeneity among

ecosystems and sensitivity to anthropogenic impacts. Limnology and

Oceanography 66:3,714–3,727, https://doi.org/10.1002/lno.11911.

Clague, D.A., B.M. Dreyer, J.B. Paduan, J.F. Martin, D.W. Caress, J.B. Gill,

D.S. Kelley, H. Thomas, R.A. Portner, J.R. Delaney, and others. 2014. Eruptive

and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based

on AUV mapping data and lava flow ages. Geochemistry, Geophysics,

Geosystems 15:3,364–3,391, https://doi.org/10.1002/2014GC005415.

Clague, D.A., J.F. Martin, J.B. Paduan, D.A. Butterfield, J.W. Jamieson, M. Le Saout,

D.W. Caress, H. Thomas, J.F. Holden, and D.S. Kelley. 2020. Hydrothermal chim­

ney distribution on the Endeavour Segment, Juan de Fuca Ridge. Geochemistry,

Geophysics, Geosystems 21(6), https://doi.org/10.1029/2020GC008917.

Coogan, L.A., A. Attar, S.F. Mihály, M. Jeffries, and M. Pope. 2017. Near-vent chem­

ical processes in a hydrothermal plume: Insights from an integrated study

of the Endeavour Segment. Geochemistry, Geophysics, Geosystems 18(4),

https://doi.org/​10.1002/2016GC006747.

Corliss, J.B., J. Dymond, L.I. Gordon, J.M. Edmond, R.P. von Herzen, R.D. Ballard,

K. Green, D. Williams, A. Bainbridge, K. Crane, and T.H. van Andel. 1979.

Submarine thermal springs on the Galápagos Rift. Science 203:1,073–1,083,

https://doi.org/10.1126/science.203.4385.1073.

Crone, T.J., W.S.D. Wilcock, A.H. Barclay, and J.D. Parsons. 2006. The sound gener­

ated by mid-ocean ridge black smoker hydrothermal vents. PLoS ONE 1(1):e133,

https://doi.org/10.1371/journal.pone.0000133.

Cuvelier, D., P. Legendre, A. Laes, P.-M. Sarradin, and J. Sarrazin. 2014. Rhythms

and community dynamics of a hydrothermal tubeworm assemblage at

Main Endeavour Field—A multidisciplinary deep-sea observatory approach.

PLoS ONE 9(5):e96924, https://doi.org/10.1371/journal.pone.0096924.

Cuvelier, D., P. Legendre, A. Laes, P-M. Sarradin, and J. Sarrazin. 2017. Biological

and environmental rhythms in (dark) deep-sea hydrothermal ecosystems.

Biogeosciences 14:2,955–2,977, https://doi.org/10.5194/bg-14-2955-2017.

Cuvelier, D., S.P. Ramalho, A. Purser, and M. Haeckel. 2022. Impact of return­

ing scientific cruises and prolonged presence on litter abundance at the

deep-sea nodule fields in the Peru Basin. Marine Pollution Bulletin 184:114162,

https://doi.org/​10.1016/j.marpolbul.2022.114162.

DeMets, C., R.G. Gordon, and D.F. Argus. 2010. Geologically current plate

motions. Geophysical Journal International 181:1–80, https://doi.org/​10.1111/​

j.1365-​246X.2009.04491.x.

Dick, G.J. 2019. The microbiomes of deep-sea hydrothermal vents: Distributed

globally, shaped locally. Nature Reviews Microbiology 17:271–283,

https://www.nature.com/​articles/s41579-019-0160-2.

Eggleston, D.B., A. Lillis, and D.R. Bohnenstiehl. 2016. Soundscapes and lar­

val settlement: Larval bivalve responses to habitat-associated underwater

sounds. Pp. 255–263 in The Effects of Noise on Aquatic Life II. Advances in

Experimental Medicine and Biology. A. Popper and A. Hawkins, eds, Springer,

New York, https://doi.org/10.1007/978-1-4939-2981-8_30.

Evans, G.N., W.E. Seyfried Jr., and C. Tan. 2023. Nutrient transition metals in a

time series of hydrothermal vent fluids from Main Endeavour Field, Juan de

Fuca Ridge, Pacific Ocean. Earth and Planetary Science Letters 602:117943,

https://doi.org/​10.1016/j.epsl.2022.117943.

Feely, R.A., M. Lewison, G.J. Massoth, G. Robert-Baldo, J.W. Lavelle, R.H. Byrne,

K.L. Von Damm, and H.C. Curl Jr. 1987. Composition and dissolution of black

smoker particulates from active vents on the Juan de Fuca Ridge. Journal of

Geophysical Research 92:11,347–11,363, https://doi.org/10.1029/JB092iB11p11347.

Fisheries and Oceans Canada. 2010. Endeavour Hydrothermal Vents: Marine

Protected Area Management Plan 2010–2015. Prepared with assistance from

Endeavour Hydrothermal Vents Area Technical Advisory Team, Vancouver, B.C.,

https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/342871.pdf.

Fisheries and Oceans Canada. 2025. Endeavour Hydrothermal Vents Marine

Protected Area (MPA) annual report 2023. Endeavour Hydrothermal Vents

Marine Protected Area.

Fornari, D.J., S.E. Beaulieu, J.F. Holden, L.S. Mullineaux, and M. Tolstoy.

2012. Introduction to the special issue: From RIDGE to Ridge 2000.

Oceanography 25(1):12–17, https://doi.org/10.5670/oceanog.2012.01.

Georgieva, M.N., S. Taboada, A. Riesgo, C. Díez-Vives, F.C. De Leo, R.M. Jeffreys,

J.T. Copley, C.T.S. Little, P. Ríos, J. Cristobo, and others. 2020. Evidence

of vent-adaptation in sponges living at the periphery of hydrothermal

vent environments: Ecological and evolutionary implications. Frontiers in

Microbiology 11:1636, https://doi.org/10.3389/fmicb.2020.01636.

Gerdes, K.H., P. Martinez Arbizu, M. Schwentner, R. Freitag, U. Schwarz-

Schampera, A. Brandt, and T.C. Kihara. 2019. Megabenthic assemblages at

the southern Central Indian Ridge—Spatial segregation of inactive hydrother­

mal vents from active-, periphery- and non-vent sites. Marine Environmental

Research 151:104776, https://doi.org/10.1016/j.marenvres.2019.104776.

Girard, F., J. Sarrazin, A. Arnaubec, M. Cannat, P.-M. Sarradin, B. Wheeler, and

M. Matabos. 2020. Currents and topography drive assemblage distribution

on an active hydrothermal edifice. Progress in Oceanography 187:102397,

https://doi.org/​10.1016/j.pocean.2020.102397.

Gomez, S., A. Carreno, and J. Lloret. 2021. Cultural heritage and environmental

ethical values in governance models: Conflicts between recreational fisheries

and other maritime activities in Mediterranean marine protected areas. Marine

Policy 129:104529, https://doi.org/10.1016/j.marpol.2021.104529

Government of Canada. 2024. Tang.ɢ–wan – ḥačxʷiqak – Tsig̱ is Marine Protected

Area Regulations. Department of Fisheries and Oceans, Ottawa, ON, 12 pp.,

https://laws-lois.justice.gc.ca/PDF/SOR-2024-122.pdf.

Hays, G.C., H.J. Koldewey, S. Andrzejaczek. M.J. Attrill, S. Barley, D.T.I. Bayley,

C.E. Benkwitt, B. Block, R.J. Schallert, A.B. Carlisle, and others. 2020. A review

of a decade of lessons from one of the world’s largest MPAs: Conservation

gains and key challenges. Marine Biology 167:159, https://doi.org/10.1007/

s00227-020-03776-w.

Jamieson, J.W., M.D. Hannington, D.A. Clague, D.S. Kelley, J.S. Holden,

M.K. Tivey, and L.E. Kimpe. 2013. Sulfide geochronology along the

Endeavour Segment of the Juan de Fuca Ridge. Geochemistry, Geophysics,

Geosystems 14:2,084–2,099, https://doi.org/10.1002/ggge.20133.

Jamieson, J.W., and A. Gartman. 2020. Defining active, inactive, and extinct sea­

floor massive sulfide deposits. Marine Policy 117:103826, https://doi.org/10.1016/​

j.marpol.2020.103926.

Juniper, S.K., K. Thornborough, K. Douglas, and J. Hillier. 2019. Remote monitor­

ing of a deep-sea marine protected area: The Endeavour Hydrothermal Vents.

Aquatic Conservation: Marine and Freshwater Ecosystems 29(S2):84–102,

https://doi.org/10.1002/aqc.3020.

Kelley, D.S., S.M. Carbotte, D.W. Caress, D.A. Clague, J.R. Delaney, J.B. Gill,

H. Hadaway, J.F. Holden, E.E.E. Hooft, J.P. Kellogg, and others. 2012. Endeavour

Segment of the Juan de Fuca Ridge: One of the most remarkable places on

Earth. Oceanography 25(1):44–61, https://doi.org/10.5670/oceanog.2012.03.

Kellogg, J.P., and R.E. McDuff. 2010. A hydrographic transient above the Salty Dawg

hydrothermal field, Endeavour Segment, Juan de Fuca Ridge. Geochemistry,

Geophysics, Geosystems 11(12), https://doi.org/10.1029/2010GC003299.

Kellogg, J.P. 2011. Temporal and Spatial Variability of Hydrothermal Fluxes within a

Mid-ocean Ridge Segment. PhD Thesis Dissertation, University of Washington,

Seattle, 141 pp.

Krauss, Z., W.S. Wilcock, M. Heesemann, A. Schlesinger, J. Kukovica, and

J.J. Farrugia. 2023. A long-term earthquake catalog for the Endeavour Segment:

Constraints on the extensional cycle and evidence for hydrothermal venting sup­

ported by propagating rifts. Journal of Geophysical Research: Solid Earth 128(2),

https:doi.org/10.1029/2022JB025662.

Lee, R.W., K. Robert, M. Matabos, A.E. Bates, and S.K. Juniper. 2015. Temporal and

spatial variation in temperature experienced by macrofauna at Main Endeavour

hydrothermal vent field. Deep Sea Research Part 1 106:154–166, https://doi.org/​

10.1016/j.dsr.2015.10.004.

Lelièvre, Y., P. Legendre, M. Matabos, S. Mihály, R.W. Lee, P.-M. Sarradin,

C.P. Arango, and J. Sarrazin. 2017. Astronomical and atmospheric impacts

on deep-sea hydrothermal vent invertebrates. Proceedings of the Royal

Society B 284:20162123, https://doi.org/10.1098/rspb.2016.2123.

Lelièvre, Y., J. Sarrazin, J. Marticorena, G. Schaal, T. Day, P. Legendre, S. Hourdez,

and M. Matabos. 2018. Biodiversity and trophic ecology of hydrothermal vent

fauna associated with tubeworm assemblages on the Juan de Fuca Ridge.

Biogeosciences 15:2,629–2,647, https://doi.org/10.5194/bg-15-2629-2018.

Levin, L.A., K. Mengerink, K.M. Gjerde, A.A. Rowden, C.L. Van Dover, M.R. Clark,

E. Ramirez-Llodra, B. Currie, C.R. Smith, K.N. Sata, and others. 2016. Defining

“serious harm” to the marine environment in the context of deep-seabed mining.

Marine Policy 74:245–259, https://doi.org/10.1016/j.marpol.2016.09.032.

Lin, T.-H., C. Chen, H.K. Watanabe, S. Kawagucci, H. Yamamoto, and T. Akamatsu.

2019. Using soundscapes to assess deep-sea benthic ecosystems. Trends in

Ecology & Evolution 34(12):1,066–1,069, https://doi.org/10.1016/j.tree.2019.09.006.

Little, S.A., K.D. Stolzenbach, and G.M. Purdy. 1990. The sound field near hydro­

thermal vents on Axial Seamount, Juan de Fuca Ridge. Journal of Geophysical

Research 95(B8): 12,927–12,945, https://doi.org/10.1029/JB095iB08p12927.

Lonsdale, P. 1977. Clustering of suspension feeding macrobenthos near abys­

sal hydrothermal vents at oceanic spreading centers. Deep Sea Research

Part A 24:857–858, https://doi.org/10.1016/0146-6291(77)90478-7.

Made with Publuu - flipbook maker